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A B S T R A C T

Structural supports (e.g., concrete and steel) provide engineering structures with stability by transferring loads.
During the construction of an engineering structure, individuals are often prone to taking short take-cuts by
traversing supports to perform their daily activities and save time. Thus, the likelihood of an individual being
subjected to an injury or even killing themselves significantly increases when performing such unsafe behavior.
To address this problem, we have developed an automatic computer-vision approach that utilizes a Mask Region
Based Convolutional Neural Network (R-CNN) to detect individuals traversing structural supports during the
construction of a project. The algorithms developed are used to: (1) automatically identify the presence of
people; and (2) recognize the relationship between people and concrete/steel supports to determine their pre-
sence of them. To validate our approach, we created an extensive database of photographs of people who had
traversed structural supports from a number of different constructions project to train and test the developed
Mask R-CNN. The recall and precision rates for overlapping detection were found to be 90% and 75%. The
results demonstrate that the developed Mask R-CNN can accurately detect people that traverse concrete/steel
supports during construction. We suggest that proposed computer-vision approach that we have developed can
be used by site management to automatically identify unsafe behavior and provide feedback to individuals about
their likelihood of falls from heights. By recognizing unsafe behavior in real-time, appropriate actions (e.g.
education) can be instantly put in place to prevent their re-occurrence.

1. Introduction

Falls from heights (FFH) are a major contributor to workforce
fatalities in construction [1]. It has been revealed that about 48% of
accidents that occur in construction arise from FFH [2]. The construc-
tion of deep foundation pits for an underground metro-system, for ex-
ample, invariably requires concrete and steel supports to be deployed to
stabilize soil and transfer loads. In China, for example, individuals
traversing structural supports over deep foundation-pits during the
construction of underground metro-systems has been identified as a
problem that site management have to regularly police, particularly as
they a prone to not wearing a safety harness even when required to
work at heights [3–5].

Numerous safety policies and procedures have been established to

prevent people from FFH. For example, the Occupational Safety and
Health Administration requires that a person working on a surface
(horizontal and vertical) with an unprotected side or edge that is six
feet or more above a lower level must be protected from falling by the
use of guardrail systems, safety net systems, or a personal fall arrest
system (PFAS) [6]. Yet, despite the considerable amount of research
that has been undertaken and the implementation of policies, proce-
dures and the development of protection measures, FFH remain a
pervasive problem worldwide [5,7].

The effectiveness of the link between safety climate and behavior
plays a role in mitigating unsafe behavior. Traditionally, interventions
have centered on the physical work environment and procedures to
prevent errors and accidents [8]. Examples include the documentation
of detailed procedures designed to provide the safest way to complete
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work, and the requirement for Personal Protective Equipment (PPE) to
be worn [8]. We have seen a subtle shift away from strict procedural
guidelines that aim to mechanize and standardize behavior in con-
struction, to a position that acknowledges individual differences and
focuses on the psychological issues that influence behavior [9–11].
When an unsafe act occurs a failure in an individual’s cognition is
produced. Such failure may arise at one of the following stages of the
cognition process [12]: (1) detecting hazards; (2) recognizing hazards;
(3) perceiving hazards; (4) deciding a response; and (5) executing the
decided response. We can see from the research undertaken by Zhang
and Fang [5] that there is a proclivity for people working at height in
China (e.g. scaffolders) for their cognition to fail at stage four as they
purposefully choose not to wear a safety harness even though they are
legally required to do so. Such actions are referred to as violations,
which are influenced by a person’s risk perception [13].

When a behavior is perceived to be a lower risk than others, then an
individual’s motivation for safety is more positive [9]. But, Bohm and
Jonathan [14] observed during construction when individuals perceive
that there is a high risk of an unsafe behavior, they still engage in this
action. Essentially, workers break-rules to make their work more effi-
cient [15–17]. In the case of structural supports, people tend to use the
structural supports as a short take-cut even though there is a likelihood
that they can fall and injure themselves or even be killed [15,16,18].
People also judge managers’ attitudes to safety through their: (1) be-
haviors, interactions with them; (2) willingness to listen and learn; and
(3) provide feedback [9–11]. However, the recognition of unsafe be-
havior often only arises during site inspections, or accidently or even
when a co-worker informs site management. Thus, the opportunity for
providing feedback to individuals about their unsafe behavior is lim-
ited.

To provide site management with the ability to recognize in real-
time unsafe behavior and provide feedback to mitigate FFH, we develop
a computer vision-based approach that can be deployed to auto-
matically identify and capture people that traverse structural supports
without PFAS in place. The approach that we have developed provides
a cost-effective alternative to having a person physically observe
workers and can be used to engender a climate of safety [19,20]. Our
research aligns with the benefits identified by several computer-vision
based studies that have been undertaken in construction as we are able
to automatically identify objects and recognize the activities under-
taken by workers [19–24]. While there has been a plethora of com-
puter-vision studies undertaken in construction, there has been, to the
authors knowledge, no research that has examined the issue of people
traversing structural supports. Therefore, the research presented in this
paper seeks to address this knowledge gap. In doing so we utilize a deep
learning Mask Region Based Convolution Neural Network (R-CNN) to
develop a computer vision approach that can accurately detect the
presence of people traversing structural supports. We commence our
research by commencing with a review of the extant computer vision
literature that surrounds behavior recognition, then we introduce our
novel computer vision approach, which is subsequently tested and va-
lidated using an experiment.

2. Literature review

It has been observed that approximately 88% of all accidents that
occur during construction materialize as a consequence of unsafe be-
havior [25]. With this in mind, a number of studies have been under-
taken that have focused on monitoring and capturing peoples’ activities
during construction, specifically their unsafe behavior using a variety of
technologies [26–34]. For example, non-visual sensors (e.g., radio fre-
quency identification (RFID) [35], ultra-wide band (UWB) [36–38] and
global positing system (GPS) [39,40]) have been utilized. Teizer et al.
[41] developed an automatic system to a capture information for
equipment operators to help identify individuals who were working in
their blind spots to mitigate hazards. Likewise, Yang et al. [31] used a

wearable inertial measurement unit (WIMUs) to collect people’s kine-
matic data, and applied a semi-supervised approach to detect near miss
falls. Similarly, Akhavian et al. [33] used a smartphone to determine a
person’s body movement, and then developed a machine learning ap-
proach to classify their activity.

Existing methods based on non-visual sensors generally track an
individual’s location. The use of such technology requires the installa-
tion of sensors or markers to be attached to a person’s body to track
their motion, but can restrict a person’s movement [26]. Moreover,
non-visual sensors have not been designed to capture contextual in-
formation, which renders them obsolete for determining when a person
traverses a structural support.

With the advent of high-resolution video cameras, the augmented
storage capacity of databases and increasing accessibility of the
Internet, the ability to document operations in construction has been
transformative. As a result, applications of computer vision have be-
come increasingly popular to monitor progress, individual activity and
recognize their unsafe behavior, as a rich set of information (e.g., lo-
cation and pose) from images and videos that can be acquired. The
recognition of unsafe behavior has been a popular application of
computer vision in construction, particularly the of detection of PPE.
For example, Fang et al. [19] developed a hybrid deep learning ap-
proach to determine if a worker was wearing their safety harness while
working at heights. Several studies have applied computer vision to
detect people who enter hazardous work areas. Kim et al. [42], for
example, integrated computer vision with a fuzzy inference to monitor
and assess the safety of people performing their tasks in the vicinity of
plant.

2.1. Convolutional neural network-based object detection

Recognition of objects (e.g. people, plant, materials, equipment, and
PPE) is a core to evaluating the performance of tasks in construction.
The information that is obtained can assist site management with their
decision-making and help improve safety performance. Using a back-
ground subtraction algorithm Chi and Caldas [43] extracted features
from video and then used a naïve Bayes classifier and neural network to
identify people and plant (e.g., loaders, and backhoes). Contrastingly,
Park and Brilakis [44] and Rezazadeh Azar and McCabe [45] utilized
Histogram of Oriented Gradient (HOG) and Haar-like features to detect
people and equipment. Similarly, using video Memarzadeh et al. [46]
combined a HOG and color features with a new multiple binary Support
Vector Machine (SVM) classifier to automatically detect and distinguish
between people and equipment. Previous research has tended to reply
on manually hand-crafted feature approaches to extract them from in-
puts, and then send them to a classifier (e.g., SVM, k-Nearest Neighbors
(k-NN)) to enact the process of detection [47]. While such research has
been able to provide good detection performance of objects, studies
have been unable to distinguish and generalize from the background
that surrounds them [47,48].

A CNN is considered to be an effective way to automatically extract
and learn features from high-dimensional images contained within a
database using end-to-end processing [48]. A number of object ap-
proaches have been employed in construction (e.g., Faster R-CNN, You
Only Look Once (YOLO), and Single Shot Multi-box Detector (SSD))
[49]. The Faster R-CNN has been identified as the best approach for
object detection due to its ability to provide high levels of accuracy
[49,50]. But, the Mask R-CNN has been found to outperform all existing
object detection approaches that have been developed [51]. Thus, to
achieve a higher level of accuracy to detect workers that traverse
structural supports, we apply the Mask R-CNN approach in this re-
search.

3. Research methodology

In accordance with previous computer vision research that has
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examined unsafe behavior, we have adopted a design science research
methodology to develop a deep learning model that can be used to
automatically recognize the unsafe behavior of workers that enacted to
traverse structural supports [19,21,52]. Design science is widely ac-
cepted as a practical multi-discipline method that has been widely ap-
plied by the fields of engineering, computer science and business
[53,54]. With the innovation and creation of artifacts, design science
can be used to understand, explain and improve existing systems in a
systematic manner [55]. The design science process typically in-
corporates five steps (Fig. 1): (1) problem identification and motivation,
(2) definition of the objectives for a solution; (3) design and develop-
ment; (4) demonstration; and (5) evaluation [56]. The research process
that we have adopted to develop our model to identify unsafe behaviors
of people that traverse on structural supports is presented in Fig. 1. We
have identified the problem and explained above why we need to de-
velop a computer vision solution to identify unsafe behavior using a
new algorithm: The Mask R-CNN. The process used to design, develop,
test and evaluate our approach is presented below.

3.1. Design and development

Our developed approach consists of: (1) a Mask R-CNN module,
which is used to detect structural supports and people; and (2) an
Overlapping Detecting Module, which is used to recognize the re-
lationship between a person and the structural support. In this research,
we use Mask R-CNN to train three object classes: (1) people; (2) steel
support; and (3) concrete supports. Fig. 2 presents the workflow of our
proposed unsafe behavior recognition approach. The procedure to im-
plement our approach is described as follows:

Step 1: The Mask R-CNN network takes an entire image as an input.
After extracting a feature map from the original image, a network
referred to as Region Proposal Network (RPN) is introduced into the
model to propose the candidate object bounding boxes, which forms
the key element for Step 2.
Step 2: Input the candidate object bounding boxes obtained from
Step 1 into the Region of Interests (RoI) Align layer, which is

described in more detail below. Then, the new feature maps from
each candidate box are extracted from RoIAlign layer. These feature
maps are used to perform classification, bounding box regression
and mask generation.
Step 3: The last module is referred to as the Overlapping Detection
Module, which we use to automatically determine a person’s safety.
We input the bounding box and mask that are obtained from Step 2
into the Overlapping Detection Module, then people that traverse
the structural supports are detected according to their ‘masking’
relationship. If the mask of these objects overlap, the unsafe beha-
vior is detected from images.

3.1.1. Mask R-CNN Module

(1) Mask R-CNN Architecture and Training

The Mask R-CNN is similar in nature to the Faster R-CNN, which
also adopts a two-stage procedure. The first stage, of the Mask R-CNN
network takes an entire image as an input from the ResNet network
[58] to extract feature maps. Then, a Region Proposal Network (RPN) is
used to propose candidate object bounding boxes from the feature
maps, which are extracted from original images. The second stage, re-
quires a RoIAlign layer, described below, to be introduced to preserve
and extract spatial locations from each candidate box and perform
classification, bounding box regression and mask generation. The
parameters used in this research are derived from Kaiming et al. [51].
RoIAlign: Traditional methods for classification tasks mainly output

a short vector from fully connected layers [59]. To generate a high-
quality segmentation mask from mask branch, each layer is required to
maintain a spatial layout of objects. In other detection methods, such as
the Faster R-CNN, the RoIPool acts as a standard operation for ex-
tracting a small feature map from each RoI. However, quantization can
introduce misalignment between the RoI and the extracted features. To
maintain the alignment of pixel-to-pixel, the Mask R-CNN adopts a new
method, called the RoIAlign, which employs bilinear interpolation to
compute the exact values of the input features and avoid any quanti-
zation of its boundaries or bins. The RoIAlign can preserve exact spatial

Fig. 1. Design science approach: Research process [54].

Feature  
Maps
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Fig. 2. Workflow for detecting people traversing structural supports.
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locations and output reliable masks.
Decoupling: The Mask R-CNN splits the prediction of tasks into

mask their generation and classification. So, the network of a Mask
branch can separately predict a binary mask for each class. For ex-
ample, if we want to a detect an individual from an image, their mask
and background will be generated. At the same time, an object classi-
fication is also performed. Finally, the mask of objects and classification
results are simultaneously outputted.
Multi-task Loss: A Mask R-CNN network has three sibling output

layers. The first outputs a discrete probability distribution (per RoI), P
(P0, … , Pk) over K + 1 categories. The second sibling layer outputs
bounding-box regression offsets, =t t t t t( , , , )k

x
k

y
k

w
k

h
k , for each of the K

object classes, indexed by k. The third sibling layer is mask branch that
has a K × m× n dimensional output S = (S1, … Sk) for each RoI en-
coding K binary masks of resolution m × n, one for each of the K
classes.

Each training RoI is labeled with a ground-truth class u, a ground-
truth bounding-box regression target v and a ground-truth mask w. We
define a multi-task loss L on each labeled RoI to jointly train for clas-
sification, bounding-box regression and mask generation:

+ +L p u L t v L s w( , ) ( , ) ( , )cls box
u

mask (1)

In this approach, the first and second task loss are derived from
Kaiming et al. [57]. Thus, the first task loss is expressed as:

=L p u P( , ) logcls u (2)

where log loss for the true class is u
The second task loss is expressed as:
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is defined over a predicted tuple of true bounding-box regression target
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Here, the parameterization for tu is derived from Krizhevsky et al. [60].
Notably, x is the value of pixels between the predicted and target po-
sition.

The third task loss is expressed as;

=
×

L
m n

w S1 logmask
i j

i j
u

i j( . ) ( . )

(5)

is an overage binary cross-entropy loss, Lmask is only defined on the kth
mask. That is, other mask outputs do not contribute to the loss.

3.1.2. Overlapping detection module
We introduce the Overlapping Detection Module to automatically

determine the position of people. If a person is identified as committing
an unsafe act, then a warming is delivered to site management. Initially,
the Overlapping Detection Module is used to mask all objects in a given
image as an input and then divide them into two groups: (1) ‘person’;
and (2) ‘support’. The masks labeled as ‘person’ are classified into the
‘person’ list ϕ. The masks labeled as ‘steel support’ and ‘concrete sup-
port’ are classified in same ‘support’ list ψ. After these tasks are per-
formed, we select a mask in ϕ and another in ψ. These two candidates
are then sent to the Dual Mask Translation (DMT) for further proces-
sing, which we describe below. Notably, our scanning mechanism first
selects the one element from ‘person’ (ϕ) to constitute pairs with each of
‘support’ (ψ) one by one. Then selecting second element from ‘person’
(ϕ) to each of ‘support’ (ψ). Therefore, every potential pairing of objects
is guaranteed to be identified until all of ‘person’ (ϕ) are selected.

To identify the safe and unsafe behaviors, we propose an intuitive
but effective approach that calculates the overlapping area σ of a couple
of masks. Formally, the decision-making process y is formulated as:

=
=

y if
y otherwise

1
0 (6)

Here δ is a hyper-parameter and serves as the threshold and is the
overlapped pixels between ‘person’ and ‘support’.We found, however,
many dangerous scenarios were unexpectedly discarded during the
selection process. For the purpose of abstaining from missing any pos-
sible pairings and refraining from detecting unsafe behaviors by error,
we propose two mechanisms to ameliorate the performance of our
model.

(1) Dual Mask Translation

In this section, we propose the use of a DMT operation. The DMT
takes two masks as inputs and translate them from the ‘person’ list ϕ by
η pixels (η is a hyper-parameter). The motivation of proposing DMT is as
follows: The mask of a person and structural supports are often sepa-
rated when the Mask R-CNN is used to detect these two objects, this is
due to nearby pixels are unable to belong to both workers and supports.
Therefore, the unsafe behavior of people that traverse the structural
supports would be incorrectly recognized as their masks are unable to
be to overlapped. To improve the accuracy, we propose the use of a
DMT to translate peoples’ mask down η pixels to structural support
mask. Here, η is set to five pixels according to results of our experi-
ments.

(2) IOU Elimination

The introduction of the DMT provides the ability to improve the
performance of the overlapping process. The DMT has, however, a
major limitation that we need to acknowledge. An inappropriate setting
of η can significantly reduce the distance between a support and person
who may be actually standing several meters away. In this instance an
incorrect detection can be made. To harness the benefits of the DMT
and address this limitation, we introduce the Intersection over Union
(IoU) Elimination. The IoU is an evaluation metric that is widely used in
object detection tasks. The IOU can be defined as:

=IOU Area of Overlap Area of Union/ (7)

The IoU enables all the candidate pairs to be separated into two sets
by the threshold δ. Thus, the Overlapping Detection Module is used to
eliminate unexpected pairs and then proceeds to use the correct sets.

4. Experiment control group studies

The developed Mask R-CNN framework was tested using an ex-
periment to detect workers standing on a structural support. For the
purpose of this research we used the Python programming language,
which enabled the calculation of matrixes and updating of weights to be
performed with a Caffe deep learning framework.

4.1. Experimental design and database establishment

In construction, databases for training deep learning models for the
purpose of recognizing unsafe behavior, to our knowledge, have not
been created and made available for use. Thus, for the purpose of va-
lidating the feasibility our proposed computer vison approach, there is a
need to create a database to train and test the model we have devel-
oped. Using a monocular camera, we created a dataset of 2018 images
that contained images of individuals walking and not walking on
structural supports over deep foundation-pits, which were from several
construction sites in Wuhan, China. The database was randomly divided
into two parts, training and testing, with both containing images of
individuals and structural supports. For purpose of training we used
1461 images and testing 450 images. Furthermore, a subset of 107
images containing individuals walking on concrete/steel supports were
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used for testing our proposed model.
To avoid bias, we collected different views, scale, and illuminations

for each of the images. The Mask R-CNN was firstly pre-trained by using
Microsoft’s Common Objects in Context (MS COCO) database, which

contains more than 330 k images that can be used for object detection,
segmentation, and captioning. Then, a subset of 1461 training images
was used to extract and generalize image features to fine tune our pre-
trained Mask R-CNN model. A subset of 450 testing images was used for

Fig. 3. Example of image annotation.

Table 1
Detection results of objects and peoples unsafe behavior (detection with p > 0.8).

Performance metric Detection of person Steel support detection Concrete support detection Unsafe behavior recognition

Correctly detected (TP) 305 818 423 81
Mis-detected (FP) 0 1 4 27
Not detected (FN) 58 282 102 9
Precision 100% 100% 99% 75%
Recall 84% 74% 81% 90%

TPTP

Fig. 4. Examples of detection of individuals walking on supports.

TP
TP

Fig. 5. Examples of detection of an individual walking on supports.
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testing Mask R-CNN model.

4.2. Database annotation

Prior to testing the performance of the developed model to auto-
matically detect people that traverse the structural supports, data
needed to be labelled to train the Mask R-CNN network. The “Labelling
Tool example Flask App” was used to manually annotate training
images, which were also developed using Python. In the Labeling Tool
interface, three labels were defined: (1) steel support; (2) concrete
support; and (3) person. An example of manual labeling undertaken for

people and supports using the “Labelling tool example Flask App” can
be seen in Fig. 3.

4.3. Performance evaluation and results

4.3.1. Performance evaluation metrics
The purpose of the evaluation is to test the algorithm’s ability to

recognize people walking on structural supports over deep foundation-
pits from images. We use two key performance indexes the: (1) preci-
sion rate; and (2) recall rate. The following equation can be applied to
determine the performance indexes:

Fig. 6. Examples of missed detections.

TP

TP

FN

FN

Fig. 7. Examples of missed detections.

Person 1

Person 2

a) b)
Fig. 8. Examples of people that are occluded by supports.

W. Fang et al. Advanced Engineering Informatics 39 (2019) 170–177

175



=

=
+

+

Precision

Recall

TP
TP FP

TP
TP FN (8)

A “true positive (TP)” refers to an event where the system makes an
accurate recognition of a worker traversing a steel support. A “false
positive (FP)” occurs when the system recognizes a worker not traver-
sing a structural support as standing/walking on it. However, a “false
negative (FN)” may arise when an unsafe behavior cannot be correctly
recognized.

4.3.2. Implementation details of proposed approach
We developed the Mask R-CNN module using Python, which was

performed on a sever equipped with a 2.5 GHz Intel® Xeon® E5-2680
CPU, a NVIDIA(R) Tesla(TM) K80GPU and 64 RAM. We resized images
to 800 pixels to obtain a shorter edge. Each mini-batch has two images
per GPU and has 64 samples ROIs with a ratio of 1:3 of positive to
negatives. Where an RoI is considered positive if it has an IoU with a
ground-truth box of at least 0.5, otherwise it is negative. The model was
trained with a learning rate of 0.001, which is decreased by 10 when all
layers have been fined tuned. At the same time, a weight decay of
0.0001 and a momentum of 0.9 are used. In this paper, the RPN with
five scales (32 × 32, 64 × 64, 128 × 128, 256 × 256 and
512 × 512 pixel) and three aspect ratios (1:1, 1:2, and 2:1) are used,
with the stride of anchors being set to 1.

4.3.3. Results performance
Table 1 presents the detection results for the: (1) object detection

performance; and (2) unsafe behaviour recognition performance. Here
we can conclude that our developed model is able to successfully detect
people, the structural support (i.e. concrete and steel) and their physical
presence on them. The precision and recall rates for detecting people,
and structural supports are 100%, 84%; 100%, 74%; and 99%, 81%
respectively. The precision and recall rates of detecting people traver-
sing supports are 75% and 90% respectively. Several examples of the
detection results are presented in Figs. 4 and 5. When a person’s bound
box is full of color, it indicates that they are traversing the structural
support.

However, some people traversing structural supports were unable to
be recognized using this proposed approach. Figs. 6 and 7 present some
examples of missed and undetected results.

5. Limitations

While this research provides a contribution to recognizing unsafe
behavior on construction sites, it has several limitations that we need to
acknowledge and address if effective real-time monitoring can be im-
plemented in practice. Firstly, our study focused on a limited number of
activities that were associated with the construction of deep founda-
tion-pits. Thus, the scope of research needs to be extended to examine a
wider range of activities and behaviors to enable an effective and re-
liable system for real-time monitoring to be developed and im-
plemented. Secondly, our model was not able to detect all people tra-
versing structural supports due to the presence of occlusions as we have
denoted in Fig. 8. Finally, to improve the process of detection we need
larger sample sizes to train and test the Mask R-CNN and prevent ‘over
fitting’.

6. Conclusions

In this paper we have presented a new computer vision approach to
recognize the unsafe behavior of people traversing structural supports
used during the construction of deep-pit foundations. The approach that
we developed utilized: (1) a Mask R-CNN to detect and segment sup-
ports and people; and (2) an Overlapping Detection Module to de-
termine relevant positioning and relationship between people and

structural supports. Using an experiment our research demonstrated
that the use of computer vision can enable the detection of an in-
dividual’s unsafe behavior with a high degree of accuracy as the pre-
cision and recall rates were found to be 75% and 90%, respectively.
Considering the accuracy of our computer vision approach, we believe
that there is considerable potential to automatically recognize the un-
safe behavior of people, particularly in the case of traversing structural
supports. Being able to identify unsafe acts in real-time during con-
struction and lead to perfunctory intervention by management, which
can result in immediate behavior modification. In addition, the ac-
quired video can be used to provide people with direct visual feedback
and be used as a tool for safety education.

To enact real-time monitoring on-site to mitigate unsafe behavior
will require further research to be undertaken to develop an optimum
algorithm to improve the generalization of our proposed approach to
detect unsafe behavior with varying backdrops that exist. Moreover, by
reconstructing a three-dimensional construction model, the spatial in-
formation would be computed by detecting construction objects from
the as-built three-dimensional construction model. Thus, the accuracy
on detecting unsafe behavior would be improved.
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